Will wireless speeds surpass fiber?

I’ve heard so much hyperbole on wireless enhancements lately that I had started to doubt my own knowledge on fiber versus wireless. Doug Dawson’s article on the 5G Hype was a good reminder that fiber is not a technology that will become obsolete any time soon and wireless alone is not the wave of the future.

Here is the hype from wireless providers…

Technologies such as millimeter waves, network function virtualization (NFV), and software-defined networking (SDN) will be among the key ingredients for future 5G experiences. AT&T Labs has been working on these technologies for years and has filed dozens of patents connected with them. . . . We expect 5G to deliver speeds 10-100 times faster than today’s average 4G LTE connections. Customers will see speeds measured in gigabits per second, not megabits.

And here’s the scoop…

How does this stack up against AT&T’s claims? First, let’s talk about how 4G does today. According to OpenSignal (who studies the speeds from millions of cellular connections), the average LTE download speeds in the 3rd quarter of last year for the major US carriers was 6 Mbps for Sprint, 8 Mbps for AT&T, and 12 Mbps for both Verizon and T-Mobile.

The standard is going to be aimed to improve average speeds for regular outdoor usage to ‘several tens of megabits per second’ which means speeds of maybe 30 Mbps. That is a great data speed on a cellphone, but it is not 10 to 100 times faster than today’s 4G speeds, but instead a nice incremental bump upward.

Where the hype comes from is the part of the standard that talks about delivering speeds within an office. With 5G that is going to be a very different application, and that very well might achieve gigabit speeds. This is where the millimeter waves come into play. As it turns out, AT&T and Verizon are talking about two totally different technologies and applications, but are purposefully making people think there will be gigabit cellular data everywhere.

The 5G standard is going to allow for the combination of multiple very high frequencies to be used together to create a very high bandwidth data path of a gigabit or more. But there are characteristics of millimeter wavelengths that limit this to indoor usage inside the home or office. For one, these frequencies won’t pass through hardly anything and are killed by walls, curtains, and to some extent even clear windows. And the signal from these frequencies can only carry large bandwidth a very short distance – at the highest bandwidth perhaps sixty feet. This technology is really going to be a competitor to WiFi but using cellular frequencies and standards. It will allow the fast transfer of data within a room or an office and would provide a wireless way to transmit something like Google’s gigabit broadband around an office without wires.

But these millimeter waves are not going to bring the same benefits outdoors that they can do indoors. There certainly can be places where somebody could get much faster speeds from 5G outdoor – if they are close to a tower and there are not many other users. But these much faster speeds are not going to work, for example, for somebody in a moving car.

This entry was posted in Wireless by Ann Treacy. Bookmark the permalink.

About Ann Treacy

I have a Master’s Degree in Library and Information Science. I have been interested or involved in providing access to information through the Internet since 1994, when I worked for Minnesota’s first Internet service provider. I am pleased to be a part of the Blandin on Broadband Team. I also work with MN Coalition on Government Information, Minnesota Rural Partners, and the American Society for Information Science and Technology.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s